Kinematic Analysis of the Double Wishbone Suspension System

Madhu Kodati
Department of Engineering Design
Indian Institute of Technology Madras
Chennai, India
madhukodati@gmail.com

Sandipan Bandyopadhyay
Department of Engineering Design
Indian Institute of Technology Madras
Chennai, India
sandipan@iitm.ac.in

Abstract—The double wishbone suspension is used commonly in high performance vehicles due to its superior kinematic response. However, its kinematics is very complicated, and to the best of the authors’ knowledge, no reported analysis of the same for the full spatial model of the suspension exists in literature. This paper presents such a solution, building upon two key elements in the formulation and solution stages, respectively: the use of Rodrigue’s parameters to develop an algebraic set of equations representing the kinematics of the mechanism, and the computation of Gröbner basis as a method of solving the resulting set of equations. It is found that the final univariate equation representing all the kinematic solutions for a given pair of steering and road profile inputs is of 64 degree – which explains the complexity observed in the kinematics of the mechanism. The real roots of this polynomial are extracted, and the solutions to the kinematic problem are computed for a particular set of inputs for the sake of illustration of the proposed formulation. The numerical accuracy of the solutions is verified by computing the residuals of the original set of kinematic constraints. The configurations of the mechanism for the real solutions are shown graphically.

Keywords: Double wishbone suspension, Spatial kinematics, Polynomial equations, Gröbner basis, Rodrigue’s parameters

I. INTRODUCTION

The double wishbone is a popular suspension architecture for high performance cars. Kinematically, the suspension mechanism can be modelled as a combination of two spatial mechanisms: a four-bar, and a five-bar, which are coupled at the king-pin (see Fig. 1). The design involves a relatively large number of elements, and thus has a reasonably large design space. This affords better control over the kinematic response of the suspension. For instance, toe variation due to road inputs can be significantly reduced by the proper design of a double wishbone suspension [1]. For the same reason, however, the kinematics of the mechanism is significantly complicated. The mechanism possesses two degrees-of-freedom: one accounting for the steering input \(s \), and the other accommodating the jounce and rebound, modelled as the road profile input \(y \), as shown in Fig. 2. Finding the output or the response of the mechanism to these inputs, i.e., determining the location and orientation...
The Gröbner basis of the ideal generated by these equations is represented in terms of the Rodrigue’s parameters (inputs. The kinematics of the mechanism is formulated for the same purpose.

In this paper, a method is presented to find the kinematic response of the double wishbone suspension (abbreviated as DWS henceforth) to a combination of road, and steering inputs. The kinematics of the mechanism is formulated in an algebraic manner, and the orientation of the DWS is represented in terms of the Rodrigue’s parameters (e.g., [4]). Such a formulation, aided by extensive symbolic computations, eventually leads to a set of three quartic equations in the three Rodrigue’s parameters. Attempts to reduce the system of equations further while retaining all the parameters and variables in their generic symbolic form proves to be futile at this point. Thus, numeric values of all the parameters as well as the inputs s, y are used to render the equations amenable to further analysis. The Gröbner basis of the ideal generated by these equations is computed next, leading to a univariate polynomial of degree 64 in c3. This equation is solved numerically, and its real roots are processed further to completely determine the configuration of the DWS for a given set of inputs. The computational steps for one combination of inputs have been studied in this paper, and the numerical accuracy of the solutions have been ascertained by means of a study of the residuals of the original loop-closure equations.

The rest of the paper is organised as follows: in Section 2, the formulation of the kinematic constraints and their solution is presented in details, with the help of a numerical example. In Section 3, the paper is concluded.

II. KINEMATIC ANALYSIS OF DOUBLE WISHBONE SUSPENSION SYSTEM

The eventual success in solving any position kinematics problem relies upon appropriate kinematic modelling, compact formulation, as well as efficient solution techniques. The details of these, as applied to the present problem, are presented in this section. In order to simplify the kinematic model, standard assumptions, e.g., rigid links, ideal joints, exact knowledge of all the geometric parameters etc., are made. The following are assumed further:

- The chassis is considered the fixed or the ground link in the mechanism.
- The universal joint between the tie-rod and the rack is replaced by a spherical joint.

A. Geometry of the DWS

The schematic of the DWS mechanism is shown in the Fig. 2. Three coordinate systems are used to define the system. The global frame of reference {0} is attached to 0p1 and its Z-axis (denoted by Z0) is along the axis of the hinges of the lower A-arm. Link 1 moves in the X0Y0 plane. Two different body-fixed frame of references, namely {1} and {2}, are attached to 0o2 and 0p1, respectively. The Z1-axis of {1} is aligned to the axis of the hinges of the upper A-arm, and Link 3 is confined to the X1Y1 plane. The X2-axis of {2} is along the link vector 0l2 = 0p2 − 0p1, and the plane X2Y2 contains the Link 4.

Any vector in the body-fixed frames of reference can be transformed to the global frame of reference by premultiplying with an appropriate rotation matrix \(\mathbf{R} \in SO(3) \) (e.g., [5]). The rotation matrix \(\mathbf{R} \) relates \{1\} to \{0\}, which can be parameterised in terms of the X-Y-Z Euler angles, \((\alpha_1, \alpha_2, \alpha_3) \) (e.g., [4]):

\[
\mathbf{R} = \mathbf{R}_X(\alpha_1)\mathbf{R}_Y(\alpha_2)\mathbf{R}_Z(\alpha_3),
\]

where, in general, \(\mathbf{R}_X(\theta) \), \(\mathbf{R}_Y(\theta) \), \(\mathbf{R}_Z(\theta) \) represent CCW rotation through an angle \(\theta \) about the axes \(X, Y, \) and \(Z \), respectively. The rotation matrix \(\mathbf{R} \) relates \{2\} to \{0\} in the same manner. However, it is parameterised in terms of the Rodrigue’s parameters, \(c = (c_1, c_2, c_3)^T \in \mathbb{R}^3 \) (e.g., [4]). This is a key step in the kinematic modelling, as it leads to an algebraic description of the orientation of the KPA, which in turn, helps in formulating the loop-closure equations in algebraic terms, as explained in the next subsection.

B. Formulation of the loop-closure equations

The DWS is a combination of a spatial four-bar loop, \(\mathbf{q}_1, \mathbf{p}_1, \mathbf{p}_2, \mathbf{q}_1, \mathbf{o}_1 \), and a spatial five bar loop, \(\mathbf{q}_1, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_5, \mathbf{p}_6 \). The rack/steering input is given to the point \(\mathbf{p}_5 \), and the road profile input is applied to the point \(\mathbf{p}_6 \) (see Fig. 2). The end points of Link 2 can be expressed as:

\[
\begin{align*}
0p_1 &= 0o_1 + RZ_0(\theta)[l_1, 0, 0]^T, \quad \text{(1)} \\
0p_2 &= 0o_2 + l_2 RZ_1(\psi)[l_3, 0, 0]^T, \quad \text{(2)}
\end{align*}
\]

respectively. The vector 0l2 can be expressed as:

\[
\begin{align*}
0l_2 &= 0p_2 - 0p_1, \quad \text{(3)} \\
0l_2 &= l_2 R[l_2, 0, 0]^T. \quad \text{(4)}
\end{align*}
\]

From (1-4), one can write:

\[
\begin{align*}
0o_2 - 0o_1 + l_2 RZ_1(\psi)[l_3, 0, 0]^T - RZ_0(\theta)[l_1, 0, 0]^T - l_2 R[l_2, 0, 0]^T = 0.
\end{align*}
\]

Equation (5) models the kinematics of the four-bar loop \(\mathbf{q}_1 \mathbf{p}_1 \mathbf{p}_2 \mathbf{q}_1 \mathbf{p}_1 \mathbf{p}_2 \mathbf{q}_1 \mathbf{p}_1 \mathbf{p}_2 \mathbf{q}_1 \mathbf{p}_1 \). The LHS of (5) is written compactly as:

\[
\eta_1 = (\eta_{1x}, \eta_{1y}, \eta_{1z})^T,
\]

where \(\eta_{1x}, \eta_{1y} \) and \(\eta_{1z} \) are given by:

\[
\begin{align*}
\eta_{1x} &= -l_2 \left(c_1^2 - c_2^2 - c_3^2 + 1 \right) - c_2^2 \sin \alpha_2 \cos \alpha_2 \cos \alpha_3 \sin \alpha_3 \sin \psi, \\
\eta_{1y} &= 2l_2 \left(c_1 c_2 + c_3 \right) + c_1 \sin \alpha_2 \cos \alpha_2 \cos \alpha_3 \sin \alpha_3 \sin \psi \cos \alpha_1 + \cos \alpha_1 \sin \alpha_2 \cos \alpha_3 \sin \alpha_3 \sin \psi \cos \alpha_1 \cos \alpha_3 - \cos \alpha_1 \sin \alpha_3 \sin \psi \cos \alpha_1 \cos \alpha_3 \sin \alpha_3 \sin \psi \sin \alpha_3 \sin \psi
\end{align*}
\]
\[\eta_{1z} = -2l_2(c_1c_3 - c_2) + c_2l_3(c_1\cos(\alpha_1 \sin \alpha_3 - \\cos \alpha_1 \sin \alpha_2 \cos \alpha_3) + \sin \psi(\cos \alpha_1 \sin \alpha_2 \sin \alpha_3 + \\sin \alpha_1 \cos \alpha_3)) + c_\Delta a_{2z}, \]

and

\[c_\Delta = 1 + c_1^2 + c_2^2 + c_3^2. \]

The end points of Link 5 can be expressed as:

\[0p_4 = 0p_1 + \frac{2}{r}R[l_2, 0, 0]^T + \frac{2}{r^2}l_4, \]

and

\[0p_5 = [p_{x5} + s_x, p_{y5} + s_y, p_{z5} + s_z]^T, \]

where \(rl_2 \) is distance between \(0p_1 \) and \(0p_3; \)

\[2l_4 = (l_4x, l_4y, l_4z)^T \]

(expressed in \(\{2\} \)), and \(0s = (s_x, s_y, s_z)^T \) is the rack input vector in \(\{0\} \), given by:

\[0s = \frac{3}{0}R[s, 0, 0]^T, \]

where

\[\frac{3}{0}R = R_X(\beta_1)R_Y(\beta_2)R_Z(\beta_3), \]

i.e., \((\beta_1, \beta_2, \beta_3) \) are X-Y-Z Euler-angles relating \(\{3\} \) to \(\{0\} \). The vector \(0l_5 \) can be expressed as:

\[0l_5 = 0p_5 - 0p_4. \]

The closure equations of the five bar loop \(o_1p_1p_4p_5o_1 \) can be reduced to a single scalar equation:

\[(0p_5 - 0p_4) \cdot (0p_6 - 0p_4) - l_5^2 = 0. \]

The expression on the LHS of (12) is denoted by \(\eta_2 \). From the road input to the lower A-arm loop, \(o_1p_1p_5o_8 \), one can write:

\[[p_{x8} + x, p_{y8} + y, p_{z8} + z]^T - \frac{2}{r}R[0l_6, 0, 0] - \frac{2}{r^2}l_6 - Rz_0(\theta)[l_1, 0, 0]^T - 0o_1 = 0, \]

where \(x, z \) are the components of displacement of \(0p_8 \) in \(\{0\} \) as a consequence of \(s \) and \(y \) departing from their initial values; \(2l_6 = (l_6x, l_6y, l_6z)^T = 0p_2 - 0p_6 \). The parameter \(\rho \) is the fraction of distance between \(0p_1 \) and \(0p_6 \) of \(l_2 \), given by:

\[\rho = ||0p_6 - 0p_1||/l_2. \]

The expression on the LHS of (13) is of the form:

\[\eta_3 \]

\[= (\eta_{3z}, \eta_{3y}, \eta_{3x})^T, \]

where \(\eta_{3x}, \eta_{3y} \) and \(\eta_{3z} \) are given by:

\[\eta_{3x} = -l_2\rho \left(c_1^2 - c_2^2 - c_3^2 + 1 \right) - 2l_6y(c_1c_2 - c_3) - 2l_6z(c_1c_3 + c_2) + c_\Delta \left(-l_1 \cos \theta + p_{x8} + x \right), \]

\[\eta_{3y} = -2l_2\rho (c_1c_2 + c_3) - 2l_6z(c_1c_2 + c_3) - l_6y \left(c_1^2 + c_2^2 - c_3^2 + 1 \right) - 2l_6z(c_2c_3 - c_1) + c_\Delta \left(-l_1 \sin \theta + p_{y8} + y \right), \]

\[\eta_{3z} = -2l_2\rho (c_1c_3 - c_2) - 2l_6z(c_1c_2 - c_3) - 2l_6y(c_1 + c_2c_3) - l_6z \left(-c_1^2 - c_2^2 + c_3^2 + 1 \right) + c_\Delta \left(p_{z8} + z \right). \]

The five equations, namely (7-9), (12), (16), define the kinematics of the DWS mechanism.

Table I. Details of the Loop-closure equations of the DWS

<table>
<thead>
<tr>
<th>Equation</th>
<th>LHS</th>
<th>Variables</th>
<th>Size (kb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7)</td>
<td>(\eta_{1x})</td>
<td>(c_1, c_2, c_3, \cos \theta, \cos \psi, \sin \psi)</td>
<td>1.664</td>
</tr>
<tr>
<td>(8)</td>
<td>(\eta_{1y})</td>
<td>(c_1, c_2, c_3, \cos \psi, \sin \theta, \sin \psi)</td>
<td>1.832</td>
</tr>
<tr>
<td>(9)</td>
<td>(\eta_{1z})</td>
<td>(c_1, c_2, c_3, \cos \theta, \sin \theta)</td>
<td>1.888</td>
</tr>
<tr>
<td>(12)</td>
<td>(\eta_2)</td>
<td>(c_1, c_2, c_3, \cos \theta, \sin \theta)</td>
<td>78.232</td>
</tr>
<tr>
<td>(16)</td>
<td>(\eta_{3y})</td>
<td>(c_1, c_2, c_3, \sin \theta)</td>
<td>2.944</td>
</tr>
<tr>
<td>(15)</td>
<td>(\eta_{3x})</td>
<td>(c_1, c_2, c_3, \sin \theta)</td>
<td>3.280</td>
</tr>
<tr>
<td>(14)</td>
<td>(\eta_{3z})</td>
<td>(c_1, c_2, c_3, \sin \theta)</td>
<td>2.880</td>
</tr>
</tbody>
</table>

![Fig. 3. Sequence of elimination of \(\cos \theta, \sin \theta, \cos \psi \) and \(\sin \psi \)](image-url)

C. Linear elimination of variables

The variables included and the sizes\(^1\) of the equations obtained in the Section II-B are summarised in the Table I. The sequence of elimination of variables needs to be chosen so as to reduce the complexity of the resulting equations. To begin with, it is noted that all the seven equations are linear in terms of sines and cosines of the angles \(\theta, \psi \). Therefore, these trigonometric variables are eliminated first in a sequential manner, as shown schematically in Fig. 3. The details of the eliminations are presented below.

First, \(\sin \theta \) is computed from (16), and substituted in (8). The functions \(\eta_{1y} \) and \(\eta_{1z} \) are linear in terms of \(\sin \psi \) and \(\cos \psi \). Hence (8), and (9), are solved linearly to obtain \(\sin \psi \) and \(\cos \psi \). The variable \(\psi \) is eliminated using the identity \(\sin^2 \psi + \cos^2 \psi - 1 = 0 \), which gives rise to the equation \(f_1(c_1, c_2, c_3) = 0 \). Note that \(f_1 \) is free of any other unknowns than those mentioned explicitly. Similarly, the expressions of \(\sin \psi \) and \(\cos \psi \) are substituted in (7), to obtain \(\cos \theta \). Using the expressions of \(\sin \theta \) and \(\cos \theta \), the variable \(\theta \) is eliminated using the identity \(\sin^2 \theta + \cos^2 \psi - 1 = 0 \), which leads to the equation \(f_2(c_1, c_2, c_3) = 0 \). Finally, the expressions of \(\sin \theta \) and \(\cos \theta \) are substituted in (12), to obtain the equation \(f_3(c_1, c_2, c_3) = 0 \).

The functions \(f_i \) are all quartic in \(c_i \), and they are also

1. All the symbolic computations have been performed using the commercial computer algebra software, Mathematica. The "size," in this context, refers to the amount of computer memory needed to represent/store an expression in Mathematica’s internal format.
The solution procedure used, however, is Gröbner basis these equations are solved only for given numerical instances in the general case, i.e., keeping all of their coefficients in symbolic form. All the numerical computations. The results are computed. The details of this final stage of elimination and solution are presented in the rest of this section. The inputs used are $s = 0.1m$, $y = 0.05m$ for all the numerical computations.

1) Numerical forms of (18-20): After the substitution of the numerical values as mentioned above, (18) becomes:

\[f_{1n} = 0.049c_1^4 - 0.980c_2c_1^3 - 11.369c_3c_1^3 + 0.093c_1^3 + 2.183c_2^2c_1^2 + 347.686c_3c_1^2 + 10.979c_2c_1^2 + 47.804c_2c_3c_1^2 - 5.515c_3c_1^2 + 0.139c_1^2 - 1.076c_1^2c_1 - 11.369c_1^3c_1 - 47.795c_2c_1^2 + 3.556c_2c_1^2c_1 + 47.989c_1^3c_1 + 3.460c_1c_2c_1 - 12.093c_1c_1c_1 - 691.088c_2c_3c_1 - 12.785c_1c_1c_1 - 0.102c_1c_1c_1 + 0.073c_1 - 0.049c_1c_3 + 12.484c_3c_1 - 0.093c_2c_3 - 0.980c_1^3c_3 + 347.734c_2^2c_3 + 0.139c_2^2c_1 + 11.760c_2c_1^2 + 2.183c_1^2 + 12.484c_2 - 0.102c_2c_3 - 5.611c_2c_3c_1 - 47.998c_2c_3 - 1.076c_3c_1 - 0.073c_1. \]

The numerical coefficients are next converted to their rational forms in an approximate manner, up to a tolerance of $\epsilon = 10^{-10}$. This renders them better suited for the symbolic manipulations needed in the computation of the Gröbner basis. For instance, the expression for f_{1r} becomes:

\[f_{1r} = \frac{4721c_3^4}{97017} - \frac{132775c_2c_3^3}{11105c_3} + \frac{1096375c_1c_3^3}{9433} + \frac{10299c_3^3}{336439} + \frac{30167705c_2c_3^3}{269453} - \frac{319509c_2c_3^3}{57932} + \frac{68680c_3c_1}{1096375c_3c_1} + \frac{419065c_2c_1}{96433} - \frac{1316081c_2c_1}{512722c_3c_1} - \frac{1316081c_2c_1}{512722c_3c_1}. \]

The functions f_2 and f_3 are treated similarly to obtain the corresponding expressions f_{2r} and f_{3r} with rational coefficients.

2) Computation of the Gröbner basis and final solution: The Gröbner basis of \{(f_{1r}, f_{2r}, f_{3r})\} with the lexicographical order $c_1 > c_2 > c_3$ consists of three polynomials: $g_1(c_3)$, $g_2(c_2, c_3)$, and $g_3(c_1, c_3)$, respectively. Among these, g_1 is a univariate polynomial in c_3 of degree 64:

\[g_1 = a_0c_3^6 + a_1c_3^5 + \cdots + a_{64} = 0. \]

Each of a_i are long integers; for instance, a_0 has 5924 digits. The polynomials g_2, g_3 are linear in c_2 and c_1, respectively. Expressions for c_2 and c_1 can be obtained as:

\[c_2 = m_2/n_2, \]

\[c_1 = m_1/n_1. \]
TABLE III. VALUES OF \(\theta, \psi, x \) AND RESIDUALS OF (5), (12) AND (13) FOR \(s = 0.1m, y = 0.05m \)

<table>
<thead>
<tr>
<th>(c_1)</th>
<th>(c_2)</th>
<th>(c_3)</th>
<th>(\theta)</th>
<th>(\psi)</th>
<th>(x)</th>
<th>(z)</th>
<th>Residuals (\times 10^{-11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.488</td>
<td>-3.312</td>
<td>1.358</td>
<td>0.351</td>
<td>0.19</td>
<td>-0.015</td>
<td>0.018</td>
<td>(| \eta_1 |)</td>
</tr>
<tr>
<td>0.259</td>
<td>0.369</td>
<td>1.361</td>
<td>0.385</td>
<td>0.577</td>
<td>-0.064</td>
<td>-0.021</td>
<td>(| \eta_2 |)</td>
</tr>
<tr>
<td>1.503</td>
<td>-13.694</td>
<td>-4.705</td>
<td>-0.0696</td>
<td>-1.093</td>
<td>0.097</td>
<td>0.018</td>
<td>(| \eta_3 |)</td>
</tr>
<tr>
<td>-0.183</td>
<td>-0.621</td>
<td>-8.162</td>
<td>-0.0611</td>
<td>-1.093</td>
<td>0.093</td>
<td>0.039</td>
<td>(| \eta_4 | \times 10^6)</td>
</tr>
</tbody>
</table>

\((a) \ c = (-2.488, -3.312, 1.358)^T \)

\((b) \ c = (0.259, 0.369, 1.361)^T \)

\((c) \ c = (1.503, -13.694, -4.705)^T \)

\((d) \ c = (-0.183, -0.621, -8.162)^T \)

Fig. 4. Configurations corresponding to the real solutions of (18-20) for \(s = 0.1m, y = 0.05m \)

\[c_1 = m_1/n_1, \]

\[c_2 = -3.312, 0.369, -13.694, -0.621; \]

\[c_3 = -2.488, 0.259, 1.503, -0.183. \]

where \(m_1, m_2 \) are polynomials in \(c_3 \) of degree 63 and \(n_1, n_2 \) are integers. The extraction of the real roots of (23) using the Mathematica routine NSolve yields \(c_3 = 1.358, 1.361, -4.705, -8.162 \). These solutions for \(c_3 \) are substituted back in (24-25) to obtain the corresponding solutions for \(c_2 \) and \(c_1 \):

1. In order to obtain accurate solutions with NSolve, the “WorkingPrecision” parameter is needed to be set to a high value of 200 in this case.

566
corresponding solutions for θ, ψ, x and z. Numerical values of these variables are listed in the Table III. The residuals of the original loop-closure equations are also listed in the Table III, demonstrating the numerical accuracy of the solutions obtained. The configurations of mechanism for the real solutions of c_1, c_2 and c_3 are shown in Fig. 4. As can be seen there, only one of the solutions, namely, the one depicted in Fig. 4(a), is realisable from a physical standpoint.

It may be noted here that the actual number of real solutions to this problem for a generic input is not known at this point. The univariate equation in c_3 is of degree 64, and it is possible that it has some roots at infinity at all configurations, leading to a lower limit for the number of possible real solutions. It may also be possible to factor the equation, leading to the identification of different assembly modes. However, all of these require much deeper study of the set of equations derived in this work, and it is too early to make any objective remark in this regard.

III. Conclusions

This paper presents a complete study of the position kinematics of the double wishbone suspension mechanism. Such a kinematic solution scheme is essential for detailed analysis or design of the suspension mechanism. The kinematic formulation used in this paper utilises an algebraic parametrisation of the orientation of the KPA. Using a simple scheme of elimination, the original set of five simultaneous algebraic-trigonometric equations, which define the kinematic constraints, are reduced to a set of three quartic equations. The solution of this reduced set of polynomial equations is done by computing the Gröbner basis of the ideal formed by the polynomials, which includes a univariate polynomial of degree 64. The numerical solutions obtained are verified by computing the residuals of the original set of equations at the solution point. Configurations of the DWS for all the real solutions obtained at a given set of inputs are shown graphically.

The main contribution of the paper is the solution of the position analysis problem of the DWS in its full complexity, perhaps for the first time in reported literature. The key motivation behind this has been to develop a kinematics back-end, to support detailed analysis/optimisation of the DWS design, as well the study of its dynamics. While the present work attains the stated objective, it still relies upon very intensive, and specialised symbolic computations, e.g., Gröbner basis computations and solutions of polynomial equations of high degree. In the future, it would be attempted to obtain the same solutions in the general case, purely by means of standard numerical computations.

REFERENCES

3. It takes about 5 minutes to compute the real configurations corresponding to a particular set of inputs, using one core of an Intel(R) Core(TM) i7-3770 CPU running at 3.40 GHz, with 32 GB of RAM.